7,466 research outputs found

    A Semantic Web Annotation Tool for a Web-Based Audio Sequencer

    Get PDF
    Music and sound have a rich semantic structure which is so clear to the composer and the listener, but that remains mostly hidden to computing machinery. Nevertheless, in recent years, the introduction of software tools for music production have enabled new opportunities for migrating this knowledge from humans to machines. A new generation of these tools may exploit sound samples and semantic information coupling for the creation not only of a musical, but also of a "semantic" composition. In this paper we describe an ontology driven content annotation framework for a web-based audio editing tool. In a supervised approach, during the editing process, the graphical web interface allows the user to annotate any part of the composition with concepts from publicly available ontologies. As a test case, we developed a collaborative web-based audio sequencer that provides users with the functionality to remix the audio samples from the Freesound website and subsequently annotate them. The annotation tool can load any ontology and thus gives users the opportunity to augment the work with annotations on the structure of the composition, the musical materials, and the creator's reasoning and intentions. We believe this approach will provide several novel ways to make not only the final audio product, but also the creative process, first class citizens of the Semantic We

    Estimating transmission probability in schools for the 2009 H1N1 influenza pandemic in Italy

    Get PDF
    BACKGROUND: Epidemic models are being extensively used to understand the main pathways of spread of infectious diseases, and thus to assess control methods. Schools are well known to represent hot spots for epidemic spread; hence, understanding typical patterns of infection transmission within schools is crucial for designing adequate control strategies. The attention that was given to the 2009 A/H1N1pdm09 flu pandemic has made it possible to collect detailed data on the occurrence of influenza-like illness (ILI) symptoms in two primary schools of Trento, Italy. RESULTS: The data collected in the two schools were used to calibrate a discrete-time SIR model, which was designed to estimate the probabilities of influenza transmission within the classes, grades and schools using Markov Chain Monte Carlo (MCMC) methods. We found that the virus was mainly transmitted within class, with lower levels of transmission between students in the same grade and even lower, though not significantly so, among different grades within the schools. We estimated median values of R 0 from the epidemic curves in the two schools of 1.16 and 1.40; on the other hand, we estimated the average number of students infected by the first school case to be 0.85 and 1.09 in the two schools. CONCLUSIONS: The discrepancy between the values of R 0 estimated from the epidemic curve or from the within-school transmission probabilities suggests that household and community transmission played an important role in sustaining the school epidemics. The high probability of infection between students in the same class confirms that targeting within-class transmission is key to controlling the spread of influenza in school settings and, as a consequence, in the general population

    Binary open clusters in the Milky Way: photometric and spectroscopic analysis of NGC 5617 and Trumpler 22

    Get PDF
    Using photometry and high resolution spectroscopy we investigate for the first time the physical connection between the open clusters NGC 5617 and Trumpler 22. Based on new CCD photometry we report their spatial proximity and common age of ~70 Myr. Based on high resolution spectra collected using the HERMES and UCLES spectrographs on the Anglo-Australian telescope, we present radial velocities and abundances for Fe, Na, Mg, Al, Si, Ca and Ni. The measured radial velocities are -38.63 +/-2.25 km/s for NGC 5617 and -38.46 +/-2.08 km/s for Trumpler 22. The mean metallicity of NGC 5617 was found to be [Fe/H] =-0.18 +/-0.02 and for Trumpler 22 was found to be [Fe/H] = -0.17 +/-0.04. The two clusters share similar abundances across the other elements, indicative of a common chemical enrichment history of these clusters. Together with common motions and ages we confirm that NGC 5617 and Trumpler 22 are a primordial binary cluster pair in the Milky Way.Comment: 7 pages, 3 figure, accepted by MNRA

    ICT for Social Inclusion and Equal Opportunities: CETI-D, an e-Governance Good Practice in Brazil

    Get PDF
    In this chapter we discuss a Knowledge Economy based approach to the inclusion of persons with disabilities (PwD) that, different from the traditional \u201cassistance\u201d model, considers PwD as active and valuable members of the present Knowledge Society, to be included in the active workforce. This approach will be discussed with reference to a specific operational case study concerning the establishment of the Center of Excellence for Technology and Innovation in Favor of Persons with Disabilities (CETI-D) conceived by Fondazione Rosselli Americas and being implemented by the State of Sao Paulo in Brazil. In the first section of the chapter we discuss the problem of the inclusion of PwD as a further aspect of the digital divide phenomenon. In the second section the principles of the United Nation Convention on the Rights of Persons with Disabilities are presented and some international best practices concerning the social inclusion of PwD are introduced. In the third section we discuss the CETI-D initiative, with the aim of showing how ICT can represent a powerful tool for social and economic inclusion. Finally, in the fourth section we discuss the conditions under which the experience of the CETI-D can be replicated in other countries, with a specific focus on less developed countries

    Constraining the Symmetry Energy: A Journey in the Isospin Physics from Coulomb Barrier to Deconfinement

    Full text link
    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso-EOS effects are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a ``direct'' study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected ``neutron trapping'' effect. The importance of studying violent collisions with radioactive beams from low to relativistic energies is finally stressed.Comment: 15 pages, 5 figures, Int.Workshop on Nuclear Dynamics in Heavy Ion Reactions and Neutron Stars, Beijing Normal Univ. July 07, to appear in Int.Journ.Modern Physics E (2008

    Deep Electrical Resistivity Tomography for the Hydrogeological Setting of Muro Lucano Mounts Aquifer (Basilicata, Southern Italy)

    Get PDF
    The proposed work concerns the application of a deep geoelectrical survey to a carbonate aquifer in order to define the best location for exploitation well drilling for increasing water supply. However, an optimal characterization of a groundwater resource is the necessary condition to reach the indicated aim. Therefore, the geoelectrical investigation was guided from the previous geological and hydrogeological characterization. Moreover, geophysical methods are good tools to improve the groundwater model when detailed information is necessary, such as the localization of a pumping well. The work summarizes the hydrogeological knowledge at the West of the Basilicata Region (Muro Lucano, Italy). The investigated area is characterized by the presence of a karst aquifer which is made up of a carbonate ridge (Castelgrande, Muro Lucano) that tectonically dips southward and is widely covered by Pliocene deposits (sands and conglomerates), by the Irpinian unit and Sicilide unit formations, and by debris slope and landslide deposits. The assessment of the complex hydrogeological framework of the area was detailed by the use of a new multichannel deep geoelectrical technique (DERT). In details, the proposed technique was able to successfully locate a less resistive zone connected to a more fractured limestone and then it was suitable for the localization of a groundwater exploitation well

    Numerical 3D simulation of a full system air core compulsator-electromagnetic rail launcher

    Get PDF
    Multiphysics problems represent an open issue in numerical modeling. Electromagnetic launchers represent typical examples that require a strongly coupled magnetoquasistatic and mechanical approach. This is mainly due to the high velocities which make comparable the electrical and the mechanical response times. The analysis of interacting devices (e.g., a rail launcher and its feeding generator) adds further complexity, since in this context the substitution of one device with an electric circuit does not guarantee the accuracy of the analysis. A simultaneous full 3D electromechanical analysis of the interacting devices is often required. In this paper a numerical 3D analysis of a full launch system, composed by an air-core compulsator which feeds an electromagnetic rail launcher, is presented. The analysis has been performed by using a dedicated, in-house developed research code, named "EN4EM" (Equivalent Network for Electromagnetic Modeling). This code is able to take into account all the relevant electromechanical quantities and phenomena (i.e., eddy currents, velocity skin effect, sliding contacts) in both the devices. A weakly coupled analysis, based on the use of a zero-dimensional model of the launcher (i.e., a single loop electrical equivalent circuit), has been also performed. Its results, compared with those by the simultaneous 3D analysis of interacting devices, show an over-estimate of about 10-15% of the muzzle speed of the armature

    t-channel production of heavy charged leptons

    Get PDF
    We study the pair production of heavy charged exotic leptons at e+ e- colliders in the SU(2)_L x SU(2)_I x U(1)_Y model. This gauge group is a subgroup of the grand unification group E6; SU(2)_I commutes with the electric charge operator, and the three corresponding gauge bosons are electrically neutral. In addition to the standard photon and Z boson contributions, we also include the contributions from extra neutral gauge bosons. A t-channel contribution due to W_I-boson exchange, which is unsuppressed by mixing angles, is quite important. We calculate the left-right and forward-backward asymmetries, and discuss how to differentiate different models.Comment: Increased discussion of experimental signatures. Version accepted by PR

    Quantum Gravity Effects in Black Holes at the LHC

    Get PDF
    We study possible back-reaction and quantum gravity effects in the evaporation of black holes which could be produced at the LHC through a modification of the Hawking emission. The corrections are phenomenologically taken into account by employing a modified relation between the black hole mass and temperature. The usual assumption that black holes explode around 11 TeV is also released, and the evaporation process is extended to (possibly much) smaller final masses. We show that these effects could be observable for black holes produced with a relatively large mass and should therefore be taken into account when simulating micro-black hole events for the experiments planned at the LHC.Comment: 14 pages, 8 figures, extended version of hep-ph/0601243 with new analysis of final products, final version accepted for publication in J. Phys.
    • 

    corecore